1.กล้องโทรทรรศน์
กล้องโทรทรรศน์ (Telescope) หรือ กล้องดูดาว เป็นทัศนูปกรณ์ซึ่งประกอบด้วย เลนส์นูนสองชุดทำงานร่วมกัน หรือ กระจกเงาเว้าทำงานร่วมกับเลนส์นูน เลนส์นูนหรือกระจกเงาเว้าขนาดใหญ่ที่อยู่ด้านใกล้วัตถุทำหน้าที่รวมแสง ส่วนเลนส์นูนที่อยู่ใกล้ตาทำหน้าที่เพิ่มกำลังขยาย การเพิ่มกำลังรวมแสงช่วยให้นักดาราศาสตร์มองเห็นวัตถุที่มีความสว่างน้อย การเพิ่มกำลังขยายช่วยให้นักดาราศาสตร์สามารถมองเห็นรายละเอียดของวัตถุมากขึ้น
กล้องโทรทรรศน์มีสามประเภท คือ กล้องโทรทรรศน์แบบหักเหแสง กล้องโทรทรรศน์แบบสะท้อนแสง และกล้องโทรทรรศน์แบบผสม กล้องส่องทางไกลชนิดสองตา มีหลักการทำงานเช่นเดียวกับกล้องโทรทรรศน์แบบหักเหแสง เพียงแต่ใช้ปริซึมหักเหแสงไปมาเพื่อลดระยะความยาวของลำกล้อง
ขาตั้งกล้องโทรทรรศน์มีสองประเภทคือ ขาตั้งแบบอัลตาซิมูธ สามารถปรับกล้องตามมุมทิศและมุมเงิน ขาตั้งแบบศูนย์สูตร ช่วยหันกล้องติดตามดาว เนื่องจากการหมุนรอบตัวเองของโลก
ขาตั้งกล้องโทรทรรศน์มีสองประเภทคือ ขาตั้งแบบอัลตาซิมูธ สามารถปรับกล้องตามมุมทิศและมุมเงิน ขาตั้งแบบศูนย์สูตร ช่วยหันกล้องติดตามดาว เนื่องจากการหมุนรอบตัวเองของโลก
1.1กล้องโทรทรรศน์หักเหแสง (อังกฤษ: refracting telescope)
-เป็นกล้องโทรทรรศน์ประเภทแรกที่ได้รับการคิดค้นขึ้นในปี ค.ศ. 1608 โดย ฮานส์ ลิเพอร์ซี (Hans Lippershey)ช่างทำแว่นตาชาวฮอลแลนด์ ซึ่งค้นพบคุณสมบัติการขยายภาพเมื่อนำเลนส์นูนสองชิ้นมาเรียนกันในระยะที่เหมาะสม ต่อมา กาลิเลโอ กาลิเลอี (Galileo Galilei) เป็นบุคคลแรกที่ริเริ่มนำกล้องมาใช้สังเกตดวงดาวเมื่อปี ค.ศ. 1609
- เป็นกล้องโทรทรรศน์ที่ใช้เลนส์นูนในการรวมแสง มีใช้กันอย่างแพร่หลายสามารถพบเห็นได้ทั่วไป กล้องโทรทรรศน์แบบหักเหแสงส่วนมากมักมีขนาดเล็กเนื่องจากเลนส์นูนส่วนใหญ่มีโฟกัสยาว (เลนส์โฟกัสสั้นสร้างยากและมีราคาสูงมาก) ดังนั้นถ้าเป็นกล้องโทรทรรศน์ขนาดใหญ่จะยาวเกะกะ ลำกล้องมีน้ำหนักมาก เปลืองพื้นที่ในการติดตั้ง จึงไม่เป็นที่นิยมใช้ในหอดูดาว กล้องโทรทรรศน์แบบหักเหแสงเหมาะสำหรับใช้ศึกษาวัตถุที่สว่างมาก เช่น ดวงจันทร์และดาวเคราะห์ แต่ไม่เหมาะสำหรับการสังเกตวัตถุที่มีขนาดใหญ่แต่สว่างน้อย เช่น เนบิลาและกาแล็กซี เนื่องจากมีกำลังรวมแสงน้อยและให้กำลังขยายมากเกินไป ภาพที่ได้จึงมีสว่างน้อยและมีขนาดใหญ่จนไม่สามารถมองเห็นภาพรวมของวัตถุ
- อัตราการขยายของกล้อง = ความยาวโฟกัสเลนซ์วัตถุ Fo /ความยาวโฟกัสเลนซ์ตา Fe
หลักการของกล้องโทรทัศน์ชนิดหักเหแสง
เลนซ์วัตถุจะรับแสงจากวัตถุที่ระยะไกลๆแล้วจะเกิดภาพที่ตำแหน่งโฟกัส(Fo) เสมอ แล้ว เลนซ์ตัวที่สอง หรือ เลนซ์ตา (Fe) จะขยายภาพจากเลนซ์วัตถุอีกครั้ง ซึ่งต้องปรับระยะของเลนซ์ตา เพื่อให้ภาพจากเลนซ์วัตถุที่ตำแหน่ง Fo อยู่ใกล้กับ โฟกัสของเลนซ์ตา Fe และทำให้เกิดภาพชัดที่สุด
โครงสร้างภายในของกล้องแบบหักเหแสง ที่เลนซ์วัตถุมักจะให้เลนซ์สองแบบที่ทำมาจากวัสดุคนละประเภท เพื่อลดอาการคลาดสี
ข้อดีของกล้องแบบหักเหแสง
1. เป็นกล้องพื้นฐานที่สร้างได้ไม่ยากนัก
2. โดยทั่วไปจะมีเส้นผ่านศูนย์กลางน้อยๆจึงมีน้ำหนักเบา
ข้อเสียของกล้องแบบหักเหแสง
1. เนื่องจากมีเส้นผ่านศูนย์กลางน้อย ทำให้ปริมาณการรับแสงน้อยไม่เหมาะใช้ดูวัตถุไกลๆอย่าง กาแลกซีและเนบิวล่า
2. ใช้เลนซ์เป็นตัวหักเหแสง ทำให้เกิดการคลาดสีได้หากใช้เลนซ์คุณภาพไม่ดีพอ จึงต้องมีการใช้เลนซ์ หลายชิ้นประกอบกันทำให้มีราคาสูง
3. ภาพที่ได้จากกล้องแบบหักเหแสงจะให้ภาพหัวกลับและกลับซ้ายขวา คืออ่านตัวหนังสือไม่ได้นั่นเอง ดังนั้นกล้องแบบนี้จะต้องมี diagonal prism เพื่อช่วยแก้ไขภาพ (ดูเรื่องอุปกรณ์กล้องโทรทรรศน์
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjtdQrpi-izv7Rg6ABeCx9LstAxoePVdBMWFFFOFyDxcHEYtrzoMvhvwLQtzM5Ii1xnug4lv20KEICt9CARlnTVfwMTXrkiC_d7IY9LOEoHaZcpqTmc1E8LnKoA_hcxvDEVmUlKz4TyBCni/s1600/%E0%B8%AB%E0%B8%B1%E0%B8%81%E0%B9%80%E0%B8%AB.jpg)
1.2กล้องโทรทรรศน์แบบสะท้อนแสง (Reflector telescope)
-เป็นกล้องโทรทรรศน์ประเภทแรกที่ได้รับการคิดค้นขึ้นในปี ค.ศ. 1608 โดย ฮานส์ ลิเพอร์ซี (Hans Lippershey)ช่างทำแว่นตาชาวฮอลแลนด์ ซึ่งค้นพบคุณสมบัติการขยายภาพเมื่อนำเลนส์นูนสองชิ้นมาเรียนกันในระยะที่เหมาะสม ต่อมา กาลิเลโอ กาลิเลอี (Galileo Galilei) เป็นบุคคลแรกที่ริเริ่มนำกล้องมาใช้สังเกตดวงดาวเมื่อปี ค.ศ. 1609
- เป็นกล้องโทรทรรศน์ที่ใช้เลนส์นูนในการรวมแสง มีใช้กันอย่างแพร่หลายสามารถพบเห็นได้ทั่วไป กล้องโทรทรรศน์แบบหักเหแสงส่วนมากมักมีขนาดเล็กเนื่องจากเลนส์นูนส่วนใหญ่มีโฟกัสยาว (เลนส์โฟกัสสั้นสร้างยากและมีราคาสูงมาก) ดังนั้นถ้าเป็นกล้องโทรทรรศน์ขนาดใหญ่จะยาวเกะกะ ลำกล้องมีน้ำหนักมาก เปลืองพื้นที่ในการติดตั้ง จึงไม่เป็นที่นิยมใช้ในหอดูดาว กล้องโทรทรรศน์แบบหักเหแสงเหมาะสำหรับใช้ศึกษาวัตถุที่สว่างมาก เช่น ดวงจันทร์และดาวเคราะห์ แต่ไม่เหมาะสำหรับการสังเกตวัตถุที่มีขนาดใหญ่แต่สว่างน้อย เช่น เนบิลาและกาแล็กซี เนื่องจากมีกำลังรวมแสงน้อยและให้กำลังขยายมากเกินไป ภาพที่ได้จึงมีสว่างน้อยและมีขนาดใหญ่จนไม่สามารถมองเห็นภาพรวมของวัตถุ
- อัตราการขยายของกล้อง = ความยาวโฟกัสเลนซ์วัตถุ Fo /ความยาวโฟกัสเลนซ์ตา Fe
หลักการของกล้องโทรทัศน์ชนิดหักเหแสง
เลนซ์วัตถุจะรับแสงจากวัตถุที่ระยะไกลๆแล้วจะเกิดภาพที่ตำแหน่งโฟกัส(Fo) เสมอ แล้ว เลนซ์ตัวที่สอง หรือ เลนซ์ตา (Fe) จะขยายภาพจากเลนซ์วัตถุอีกครั้ง ซึ่งต้องปรับระยะของเลนซ์ตา เพื่อให้ภาพจากเลนซ์วัตถุที่ตำแหน่ง Fo อยู่ใกล้กับ โฟกัสของเลนซ์ตา Fe และทำให้เกิดภาพชัดที่สุด
โครงสร้างภายในของกล้องแบบหักเหแสง ที่เลนซ์วัตถุมักจะให้เลนซ์สองแบบที่ทำมาจากวัสดุคนละประเภท เพื่อลดอาการคลาดสี
ข้อดีของกล้องแบบหักเหแสง
1. เป็นกล้องพื้นฐานที่สร้างได้ไม่ยากนัก
2. โดยทั่วไปจะมีเส้นผ่านศูนย์กลางน้อยๆจึงมีน้ำหนักเบา
ข้อเสียของกล้องแบบหักเหแสง
1. เนื่องจากมีเส้นผ่านศูนย์กลางน้อย ทำให้ปริมาณการรับแสงน้อยไม่เหมาะใช้ดูวัตถุไกลๆอย่าง กาแลกซีและเนบิวล่า
2. ใช้เลนซ์เป็นตัวหักเหแสง ทำให้เกิดการคลาดสีได้หากใช้เลนซ์คุณภาพไม่ดีพอ จึงต้องมีการใช้เลนซ์ หลายชิ้นประกอบกันทำให้มีราคาสูง
3. ภาพที่ได้จากกล้องแบบหักเหแสงจะให้ภาพหัวกลับและกลับซ้ายขวา คืออ่านตัวหนังสือไม่ได้นั่นเอง ดังนั้นกล้องแบบนี้จะต้องมี diagonal prism เพื่อช่วยแก้ไขภาพ (ดูเรื่องอุปกรณ์กล้องโทรทรรศน์
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjtdQrpi-izv7Rg6ABeCx9LstAxoePVdBMWFFFOFyDxcHEYtrzoMvhvwLQtzM5Ii1xnug4lv20KEICt9CARlnTVfwMTXrkiC_d7IY9LOEoHaZcpqTmc1E8LnKoA_hcxvDEVmUlKz4TyBCni/s1600/%E0%B8%AB%E0%B8%B1%E0%B8%81%E0%B9%80%E0%B8%AB.jpg)
![]() |
กล้องโทรทรรศน์แบบหักเหแสง |
1.2กล้องโทรทรรศน์แบบสะท้อนแสง (Reflector telescope)
ถูกคิดค้นโดย เซอร์ ไอแซค นิวตัน บางครั้งจึงถูกเรียกว่า "กล้องโทรทรรศน์แบบนิวโทเนียน" (Newtonian telescope) กล้องโทรทรรศน์แบบนี้ใช้กระจกเว้าทำหน้าที่เลนส์ใกล้วัตถุแทนเลนส์นูน รวบรวมแสงส่งไปยังกระจกทุติยภูมิซึ่งเป็นกระจกเงาระนาบขนาดเล็กติดตั้งอยู่ในลำกล้อง สะท้อนลำแสงให้ตั้งฉากออกมาที่เลนส์ตาที่ติดตั้งอยู่ที่ด้านข้างของลำกล้อง
หลักการของกล้องโทรทัศน์ชนิดสะท้อนแสง
กล้องจะรับแสงที่เข้ามากระทบกับกระจกเว้าที่อยู่ท้ายกล้องที่เราเรียกว่า Primary Mirror แล้วรวมแสง สะท้อนกับกระจกระนาบหรือ ปริซึม เราเรียกว่า Secondary Mirror ที่อยู่กลางลำกล้อง เข้าสู่เลนซ์ตาขยายภาพอีกทีหนึ่ง
- อัตราขยายของกล้อง = ความยาวโฟกัสของกระจกเว้า / ความโฟกัสของเลนซ์ตา
ข้อดีของกล้องชนิดนี้
1. ใช้กระจกเว้าเป็นตัวรวมแสง ทำให้สามารถสร้างขนาดใหญ่มากๆได้ ซึ่งจะมีราคาถูกกว่าเลนซ์ที่มีขนาดเท่ากัน
2. โดยทั้วไปกล้องชนิดนี้จะมีเส้นผ่านศูนย์กลาง 5-6 นิ้วขึ้นไป ทำให้มีการรวมแสงได้มากเหมาะที่จะใช้สังเกตวัตถุระยะไกลๆ เช่น กาแลกซี เนบิวล่า เพราะมีความเข้มแสงน้อยมาก
3. ภาพที่ได้จากกล้องแบบสะท้อนแสง จะไม่กลับภาพซ้ายขวาเหมือนกล้องแบบหักเหแสง แต่การมองภาพอาจจะ หัวกลับบ้าง ขึ้นอยู่กับลักษณะการมองจากกล้องเพราะเป็นการมองที่หัวกล้อง ไม่ใช่ที่ท้ายกล้อง เหมือนกล้องแบบหักเหแสง
ข้อเสียของกล้องชนิดนี้
1. การสร้างนั้นยุ่งยากซับซ้อนมาก
2. มีกระจกบานที่สองสะท้อนภาพอยู่กลางลำกล้อง ทำให้กีดขวางทางเดินของแสง หากเส้นผ่านศูนย์กลาง กล้องเล็กมากๆ ดังนั้นกล้องแบบสะท้อนแสงนี้จะมักมีขนาดใหญ่ ตั้งแต่ 4.5 นิ้วขึ้นไป
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgRh6Fjkc_sj2ZA6jWHE2WFe_MsGXOq-a6oTSw1Up919EPVhzIqU4Fgz7z0Hg7KMQSMGUVJGE-ckgEYvOy6qyOXbBl8sl47XNdLGvzA-Z93wbjjfJswNz8MFGNroI6pf5cHDzsS43R-uXHp/s1600/%E0%B8%AA%E0%B8%B0%E0%B8%97%E0%B9%89%E0%B8%AD%E0%B8%99-.jpg)
1.3กล้องโทรทรรศน์แบบผสม (Catadioptic telescope)กล้องโทรทรรศน์แบบผสม (Catadioptic telescope) เป็นกล้องโทรทรรศน์แบบสะท้อนแสงที่ใช้การสะท้อนแสงกลับไปมาเพื่อให้ลำกล้องมีขนาดสั้นลง โดยใช้กระจกนูนเป็นกระจกทุติยภูมิช่วยบีบลำแสงทำให้ลำกล้องสั้นกระทัดรัด แต่ยังคงกำลังขยายสูงดังภาพที่ 5 อย่างไรการทำงานของกระจกนูนทำให้ภาพที่เกิดขึ้นบนระนาบโฟกัสมีความโค้ง จึงจำเป็นต้องติดตั้งเลนส์ปรับแก้ (Correction plate) ไว้ที่ปากลำกล้องเพื่อทำงานร่วมกับกระจกทุติยภูมิ ในการชดเชยความโค้งของระนาบโฟกัส โดยที่เลนส์ปรับแก้ไม่ได้มีอิทธิพลต่อกำลังรวมแสงและกำลังขยายเลยหลักการของกล้องโทรทัศน์ชนิดผสมกล้องจะรับแสงจากวัตถุที่ระยะไกลๆ ผ่านกระจกด้านหน้า ที่เราเรียกว่า Correcting Plated หรือกระจกสะสมแสง มีลักษณะเป็นเลนซ์เบื้องต้น มากระทบกระจกบานแรกที่ท้ายกล้อง ที่เราเรียกว่า เลนส์หลัก แล้วสะท้อนกลับไปที่กระจกสะสมแสง ซึ่งตรงกลางจะมี เลนส์รอง สะท้อนกลับมาที่ท้ายกล้องเข้าสู่เลนซ์ตาขยายภาพอีกทีหนึ่ง หลักการคล้ายกับกล้องแบบนิวโทเนี่ยน แต่กล้องแบบผสม จะดูภาพจากท้ายกล้อง ไม่ใช่ข้างกล้อง และภาพที่ได้ยังมีการกลับหัวและกลับซ้ายขวา ซึ่งต้องอาศัย diagonal prism ช่วยแก้ไขภาพเหมือนกับกล้องแบบหักเหแสง![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjyDbEpN468_nkoBkbZ2u-xx_c47aGtA6LjNS4oy9P5HMl3FNdanDndJ0h-dqVuWV2TN8KDoEkHbYlwwm-Il7QFSm-dOg2jeecWEaCM_fcPMKFOb0Yrm6yFQFDvRFzCJFMkRo2gvYV78P8H/s1600/%E0%B8%9C%E0%B8%AA%E0%B8%A1.jpg)
การออกแบบวงโคจรของดาวเทียมขึ้นอยู่กับวัตถุประสงค์ของการใช้งานดาวเทียม ระดับความสูงของดาวเทียมมีความสัมพันธ์กับคาบเวลาในวงโคจรตามกฎของเคปเลอร์ข้อที่ 3 (กำลังสองของคาบวงโคจรของดาวเทียม แปรผันตาม กำลังสามของระยะห่างจากโลก) ดังนั้น ณ ระดับความสูงจากผิวโลกระดับหนึ่ง ดาวเทียมจะต้องมีความเร็วในวงโคจรค่าหนึ่ง มิฉะนั้นดาวเทียมอาจตกสู่โลกหรือหลุดจากวงโคจรรอบโลก ดาวเทียมวงโคจรต่ำเคลื่อนที่เร็ว ดาวเทียมวงโคจรสูงเคลื่อนที่ช้า นักวิทยาศาสตร์คำนวณหาค่าความเร็วในวงโคจรได้โดยใช้ “กฎความโน้มถ่วงแห่งเอกภพของนิวตัน” (Newton's Law of Universal Gravitation) “วัตถุสองชิ้นดึงดูดกันด้วยแรงซึ่งแปรผันตามมวลของวัตถุ แต่แปรผกผันกับระยะทางระหว่างวัตถุยกกำลังสอง” ดังนี้ แรงสู่ศูนย์กลาง = แรงโน้มถ่วงของโลก mv2/r = G (Mm/r2) v = (GM/r)1/2 โดยที่ v = ความเร็วของดาวเทียม M = มวลของโลก m = มวลของดาวเทียม r = ระยะทางระหว่างศูนย์กลางของโลกกับดาวเทียม G = ค่าคงที่ของแรงโน้มถ่วง = 6.67 x 10-11 Nm2/kg22.2ประเภทดาวเทียมจำแนกประเภทของดาวเทียมตามประโยชน์การใช้งานได้ดังนี้-ดาวเทียมทำแผนที่ เป็นดาวเทียมที่มีวงโคจรต่ำ (LEO) ที่ระดับความสูงไม่เกิน 800 กิโลเมตร เพื่อให้ได้ภาพที่มีรายละเอียดสูง และเป็นดาวเทียมที่มีวงโคจรใกล้ขั้วโลก (Polar orbit) เพื่อให้สแกนพื้นผิวถ่ายภาพได้ครอบคลุมทุกพื้นที่ของโลก ดาวเทียมทำแผนที่ที่มีชื่อเสียงได้แก่ Ikonos, QuickBird
-ดาวเทียมสำรวจทรัพยากร เป็นดาวเทียมวงโคจรต่ำที่มีวงโคจรแบบใกล้ขั้วโลก (Near Polar Orbit) ที่ระยะสูงประมาณ 800 กิโลเมตร จึงไม่มีรายละเอียดสูงเท่าภาพถ่ายที่ได้จากดาวเทียมทำแผนที่ เพราะเน้นการครอบคลุมพื้นที่เป็นบริเวณกว้าง ดาวเทียมสำรวจทรัพยากรที่มีชื่อเสียงมากได้แก่ LandSat, Terra และ Aqua (MODIS Instruments) ดาวเทียมสำรวจทรัพยากรของไทยมีชื่อว่า ธีออส (Theos)
-ดาวเทียมอุตุนิยมวิทยา มีวงโคจรหลายระดับขึ้นอยู่กับการออกแบบในการใช้งาน ดาวเทียม NOAA มีวงโคจรต่ำถ่ายภาพรายละเอียดสูง ส่วนดาวเทียม GOES และ MTSAT มีวงโคจรค้างฟ้าอยู่ที่ระดับสูงถ่ายภาพมุมกว้างครอบคลุมทวีปและมหาสมุทร
-ดาวเทียมเพื่อการนำร่อง Global Positioning System "GPS" เป็นระบบบอกตำแหน่งพิกัดภูมิศาสตร์บนพื้นโลก ซึ่งประกอบด้วยเครือข่ายดาวเทียมจำนวน 24 ดวง โคจรรอบโลกในทิศทางต่างๆ ที่ระยะสูง 20,000 กิโลเมตรส่งสัญญาณมาบนโลกพร้อมๆ กัน ปัจจุบันเครื่องรับ GPS เป็นที่นิยมใช้กันในหมู่นักเดินทางมีทั้งแบบมือถือ ติดตั้งบนรถ เรือ และเครื่องบิน
-ดาวเทียมโทรคมนาคม เช่น Intelsat, Thaicom ส่วนใหญ่เป็นดาวเทียมวงโคจรค้างฟ้า (Geo-stationary Orbit) เพื่อถ่ายทอดสัญญาณจากทวีปหนึ่งไปยังอีกทวีปหนึ่ง
-ดาวเทียมภารกิจพิเศษ นอกจากดาวเทียมทั่วไปที่ใช้งานเกี่ยวข้องกับชีวิตประจำวันตามที่กล่าวไปแล้ว ยังมีดาวเทียมอีกหลายชนิดที่ส่งขึ้นไปเพื่อปฏิบัติภารกิจพิเศษเฉพาะทาง เช่น ดาวเทียมเพื่อการวิจัยทางวิทยาศาสตร์ กล้องโทรทรรศน์อวกาศ ดาวเทียมจารกรรม ดาวเทียมทางทหาร ดาวเทียมประเภทนี้มีระยะสูงและรูปแบบของวงโคจรต่างๆ กันขึ้นอยู่กับวัตถุประสงค์ของการใช้งาน
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh_-eRxbfGkXqTjqakTsh6WzUYk0wC0otF2GJV8o03SFDiP0ict7_hjnE8dxN_1fBsykS3fnLL-LAodx4_2lqs8EUJi_nVBhKMEuzrsysfhL296K0BDIXEKrvvwAn8CB8NZfu6iMpl_gBlg/s1600/ariane.gif)
จรวด (Rocket) เป็นเครื่องยนต์ที่ใช้ขับเคลื่อนพาหนะสำหรับขนส่งอุปกรณ์หรือมนุษย์ขึ้นสู่อวกาศ จรวดสามารถเดินทางไปในอวกาศ เนื่องจากไม่จำเป็นต้องอาศัยออกซิเจนในบรรยากาศมาใช้ในการสันดาปเชื้อเพลิง ทั้งนี้เพราะว่าจรวดมีถังบรรจุออกซิเจนอยู่ในตัวเอง จรวดที่ใช้เดินทางไปสู่อวกาศจะต้องมีแรงขับเคลื่อนสูงมากและต่อเนื่อง เพื่อเอาชนะแรงโน้มถ่วงของโลก (Gravity) ซึ่งมีความเร่ง 9.8 เมตร/วินาที2 ในการเดินทางจากพื้นโลกสู่วงโคจรรอบโลก จรวดทำงานตามกฎของนิวตัน 3 ข้อดังนี้ -กฎข้อที่ 3 “แรงกริยา = แรงปฏิกิริยา” จรวดปล่อยแก๊สร้อนออกทางท่อท้ายด้านล่าง (แรงกริยา) ทำให้จรวดเคลื่อนที่ขึ้นสู่อากาศ (แรงปฏิกิริยา) -กฏข้อที่ 2 "ความเร่งของจรวดแปรผันตามแรงขับของจรวด แต่แปรผกผันกับมวลของจรวด" (a = F/m) ดังนั้นจรวดต้องเผาไหม้เชื้อเพลิงอย่างต่อเนื่อง เพื่อสร้างความเร่งเอาชนะแรงโน้มถ่วง และเพื่อให้ได้ความเร่งสูงสุด นักวิทยาศาสตร์จะต้องออกแบบให้จรวดมีมวลน้อยที่สุดแต่มีแรงขับดันมากที่สุด -กฎข้อที่ 1 "กฎของความเฉื่อย" เมื่อจรวดนำดาวเทียมหรือยานอวกาศเข้าสู่วงโคจรรอบโลกแล้ว จะดับเครื่องยนต์เพื่อเคลื่อนที่ด้วยแรงเฉื่อย ให้ได้ความเร็วคงที่ เพื่อรักษาระดับความสูงของวงโคจรให้คงที่ แบ่งประเภทของจรวดตามชนิดของเชื้อเพลิงออกเป็น 3 ประเภท คือ1.จรวดเชื้อเพลิงแข็ง มีโครงสร้างไม่ซับซ้อน แต่เมื่อการเผาไหม้เชื้อเพลิงเกิดขึ้นแล้ว ไม่สามารถหยุดได้ ตัวอย่างของจรวดเชื้อเพลิงแข็งได้แก่ บั้งไฟภาคอีสาน จรวดทำลายรถถัง เป็นต้น 2.จรวดเชื้อเพลิงเหลว มีโครงสร้างซับซ้อนกว่าจรวดเชื้อเพลิงแข็ง เพราะต้องมีถังเก็บเชื้อเพลิงเหลว และออกซิเจนเหลว (เพื่อช่วยให้เกิดการสันดาป) ซึ่งมีอุณหภูมิต่ำกว่าจุดเยือกแข็ง และยังต้องมีระบบปั๊มและท่อเพื่อลำเลียงเชื้อเพลิงเข้าสู่ห้องเครื่องยนต์เพื่อทำการเผาไหม้ดังภาพที่ 1 ด้วยเหตุนี้จรวดเชื้อเพลิงเหลวจึงมีราคาสูง อย่างไรก็ตามจรวดเชื้อเพลิงเหลวมีข้อดีคือ สามารถควบคุมปริมาณการเผาไหม้ และปรับทิศทางของกระแสแก๊สได้ ทำให้ปลอดภัย ควบคุมทิศทางและความเร็วได้ง่าย
3.จรวดไอออน ไม่ได้ใช้พลังงานจากการสันดาปเชื่้อเพลิงดังเช่นจรวดเชื้อเพลิงแข็งและจรวดเชื้อเพลิงเหลว แต่ใช้พลังงานไฟฟ้ายิงอิเล็กตรอนเข้าใส่อะตอมของแก๊สเฉื่อย เช่น ซีนอน (Xenon) ให้แตกเป็นประจุ แล้วเร่งปฏิกริยาให้ประจุเคลื่อนที่ออกจากท่อท้ายของเครื่องยนต์ด้วยความเร็วสูงเพื่อให้เกิดแรงดัน (แรงกริยา) ผลักจรวดให้เคลื่อนที่ไปด้านหน้า (แรงปฏิกริยา) จรวดไอออนมีขนาดเล็กจึงมีแรงขับเคลื่อนต่ำแต่มีความประหยัดสูง จึงเหมาะสำหรับใช้ในการเดินทางระหว่างดวงดาวเป็นระยะเวลานาน
ยานอวกาศที่ไม่มีมนุษย์ควบคุม (Unmanned Spacecraft) มีขนาดเล็กมากเมื่อเปรียบเทียบกับยานอวกาศที่มีมนุษย์ควบคุม ยานอวกาศชนิดนี้มีมวลน้อยไม่จำเป็นต้องใช้จรวดนำส่งขนาดใหญ่ จึงมีความประหยัดเชื้อเพลิงมาก อย่างไรก็ตามในการควบคุมยานในระยะไกลไม่สามารถใช้วิทยุควบคุมได้ เนื่องจากคลื่นแม่เหล็กไฟฟ้าต้องใช้เวลาในการเดินทาง ยกตัวอย่างเช่น ดาวเสาร์อยู่ไกลจากโลกประมาณ 1 พันล้านกิโลเมตร หรือ 1 ชั่วโมงแสง หากส่งคลื่นวิทยุไปยังดาวเสาร์ คลื่นวิทยุต้องใช้เวลานานถึง 1 ชั่วโมง ดังนั้นการควบคุมให้ยานเลี้ยวหลบหลีกก้อนน้ำแข็งบริเวณวงแหวนจะไม่ทัน ยานอวกาศประเภทนี้จึงต้องมีสมองกลคอมพิวเตอร์และระบบซอฟต์แวร์ซึ่งฉลาดมาก เพื่อให้ยานอวกาศสามารถต้องปฏิบัติภารกิจได้เองทุกประการและแก้ไขปัญหาเฉพาะหน้าได้ทันท่วงที เหตุผลอีกส่วนหนึ่งที่นักวิทยาศาสตร์นิยมใช้ยานอวกาศที่ไม่มีมนุษย์ควบคุมในงานสำรวจระยะบุกเบิกและการเดินทางระยะไกล เนื่องจากการออกแบบยานไม่ต้องคำนึงถึงปัจจัยในการดำรงชีวิต ทำให้ยานสามารถเดินทางระยะไกลได้เป็นระยะเวลานานนอกเหนือขีดจำกัดของมนุษย์ ยานอวกาศที่ไม่มีมนุษย์ควบคุมได้แก่ ยานแคสินี (Cassini spacecraft) ซึ่งใช้สำรวจดาวเสาร์ เป็นต้น
หลักการของกล้องโทรทัศน์ชนิดสะท้อนแสง
กล้องจะรับแสงที่เข้ามากระทบกับกระจกเว้าที่อยู่ท้ายกล้องที่เราเรียกว่า Primary Mirror แล้วรวมแสง สะท้อนกับกระจกระนาบหรือ ปริซึม เราเรียกว่า Secondary Mirror ที่อยู่กลางลำกล้อง เข้าสู่เลนซ์ตาขยายภาพอีกทีหนึ่ง
- อัตราขยายของกล้อง = ความยาวโฟกัสของกระจกเว้า / ความโฟกัสของเลนซ์ตา
ข้อดีของกล้องชนิดนี้
1. ใช้กระจกเว้าเป็นตัวรวมแสง ทำให้สามารถสร้างขนาดใหญ่มากๆได้ ซึ่งจะมีราคาถูกกว่าเลนซ์ที่มีขนาดเท่ากัน
2. โดยทั้วไปกล้องชนิดนี้จะมีเส้นผ่านศูนย์กลาง 5-6 นิ้วขึ้นไป ทำให้มีการรวมแสงได้มากเหมาะที่จะใช้สังเกตวัตถุระยะไกลๆ เช่น กาแลกซี เนบิวล่า เพราะมีความเข้มแสงน้อยมาก
3. ภาพที่ได้จากกล้องแบบสะท้อนแสง จะไม่กลับภาพซ้ายขวาเหมือนกล้องแบบหักเหแสง แต่การมองภาพอาจจะ หัวกลับบ้าง ขึ้นอยู่กับลักษณะการมองจากกล้องเพราะเป็นการมองที่หัวกล้อง ไม่ใช่ที่ท้ายกล้อง เหมือนกล้องแบบหักเหแสง
ข้อเสียของกล้องชนิดนี้
1. การสร้างนั้นยุ่งยากซับซ้อนมาก
2. มีกระจกบานที่สองสะท้อนภาพอยู่กลางลำกล้อง ทำให้กีดขวางทางเดินของแสง หากเส้นผ่านศูนย์กลาง กล้องเล็กมากๆ ดังนั้นกล้องแบบสะท้อนแสงนี้จะมักมีขนาดใหญ่ ตั้งแต่ 4.5 นิ้วขึ้นไป
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgRh6Fjkc_sj2ZA6jWHE2WFe_MsGXOq-a6oTSw1Up919EPVhzIqU4Fgz7z0Hg7KMQSMGUVJGE-ckgEYvOy6qyOXbBl8sl47XNdLGvzA-Z93wbjjfJswNz8MFGNroI6pf5cHDzsS43R-uXHp/s1600/%E0%B8%AA%E0%B8%B0%E0%B8%97%E0%B9%89%E0%B8%AD%E0%B8%99-.jpg)
![]() |
กล้องโทรทัศน์ชนิดสะท้อนแสง |
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjyDbEpN468_nkoBkbZ2u-xx_c47aGtA6LjNS4oy9P5HMl3FNdanDndJ0h-dqVuWV2TN8KDoEkHbYlwwm-Il7QFSm-dOg2jeecWEaCM_fcPMKFOb0Yrm6yFQFDvRFzCJFMkRo2gvYV78P8H/s1600/%E0%B8%9C%E0%B8%AA%E0%B8%A1.jpg)
![]() |
กล้องโทรทรรศน์แบบผสม |
2.การขนส่งและการโคจรของดาวเทียม
-การส่งดาวเทียมและยานอวกาศจากพื้นโลกขึ้นสู่อวกาศจะต้องสู้กับแรงโน้มถ่วงของโลก ดาวเทียมต้องเคลื่อนที่ด้วยความเร็วสูงพอเหมาะจึงสู้แรงโน้มถ่วงได้ โดยต้องอาศัยจรวดที่มีแรงขับดันและความเร็วสูง ความเร็วของจรวดต้องมากกว่า 7.91 กิโลเมตร/วินาที ดาวเทียมจะสามารถโคจรรอบโลกได้ในระดับต่ำที่สุด ถ้าใช้ความเร็วมากกว่านี้จะอยู่ในระดับที่สูงขึ้น![]() |
ความเร็วของจรวดที่ผิวโลกเพื่อส่งดาวเทียมในความสูงต่างๆ |
![]() |
การปล่อยจรวดที่ความเร็วต่างๆ |
![]() |
ikonos |
![]() |
ธีออส |
![]() |
NOAA |
![]() |
ระบบGPS |
-ดาวเทียมโทรคมนาคม เช่น Intelsat, Thaicom ส่วนใหญ่เป็นดาวเทียมวงโคจรค้างฟ้า (Geo-stationary Orbit) เพื่อถ่ายทอดสัญญาณจากทวีปหนึ่งไปยังอีกทวีปหนึ่ง
![]() |
ไทยคม 6 |
-ดาวเทียมภารกิจพิเศษ นอกจากดาวเทียมทั่วไปที่ใช้งานเกี่ยวข้องกับชีวิตประจำวันตามที่กล่าวไปแล้ว ยังมีดาวเทียมอีกหลายชนิดที่ส่งขึ้นไปเพื่อปฏิบัติภารกิจพิเศษเฉพาะทาง เช่น ดาวเทียมเพื่อการวิจัยทางวิทยาศาสตร์ กล้องโทรทรรศน์อวกาศ ดาวเทียมจารกรรม ดาวเทียมทางทหาร ดาวเทียมประเภทนี้มีระยะสูงและรูปแบบของวงโคจรต่างๆ กันขึ้นอยู่กับวัตถุประสงค์ของการใช้งาน
![]() |
ดาวเทียมลาดตระเวณทางทหาร |
3.จรวด
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh_-eRxbfGkXqTjqakTsh6WzUYk0wC0otF2GJV8o03SFDiP0ict7_hjnE8dxN_1fBsykS3fnLL-LAodx4_2lqs8EUJi_nVBhKMEuzrsysfhL296K0BDIXEKrvvwAn8CB8NZfu6iMpl_gBlg/s1600/ariane.gif)
จรวด (Rocket) เป็นเครื่องยนต์ที่ใช้ขับเคลื่อนพาหนะสำหรับขนส่งอุปกรณ์หรือมนุษย์ขึ้นสู่อวกาศ จรวดสามารถเดินทางไปในอวกาศ เนื่องจากไม่จำเป็นต้องอาศัยออกซิเจนในบรรยากาศมาใช้ในการสันดาปเชื้อเพลิง ทั้งนี้เพราะว่าจรวดมีถังบรรจุออกซิเจนอยู่ในตัวเอง จรวดที่ใช้เดินทางไปสู่อวกาศจะต้องมีแรงขับเคลื่อนสูงมากและต่อเนื่อง เพื่อเอาชนะแรงโน้มถ่วงของโลก (Gravity) ซึ่งมีความเร่ง 9.8 เมตร/วินาที2 ในการเดินทางจากพื้นโลกสู่วงโคจรรอบโลก จรวดทำงานตามกฎของนิวตัน 3 ข้อดังนี้ -กฎข้อที่ 3 “แรงกริยา = แรงปฏิกิริยา” จรวดปล่อยแก๊สร้อนออกทางท่อท้ายด้านล่าง (แรงกริยา) ทำให้จรวดเคลื่อนที่ขึ้นสู่อากาศ (แรงปฏิกิริยา) -กฏข้อที่ 2 "ความเร่งของจรวดแปรผันตามแรงขับของจรวด แต่แปรผกผันกับมวลของจรวด" (a = F/m) ดังนั้นจรวดต้องเผาไหม้เชื้อเพลิงอย่างต่อเนื่อง เพื่อสร้างความเร่งเอาชนะแรงโน้มถ่วง และเพื่อให้ได้ความเร่งสูงสุด นักวิทยาศาสตร์จะต้องออกแบบให้จรวดมีมวลน้อยที่สุดแต่มีแรงขับดันมากที่สุด -กฎข้อที่ 1 "กฎของความเฉื่อย" เมื่อจรวดนำดาวเทียมหรือยานอวกาศเข้าสู่วงโคจรรอบโลกแล้ว จะดับเครื่องยนต์เพื่อเคลื่อนที่ด้วยแรงเฉื่อย ให้ได้ความเร็วคงที่ เพื่อรักษาระดับความสูงของวงโคจรให้คงที่ แบ่งประเภทของจรวดตามชนิดของเชื้อเพลิงออกเป็น 3 ประเภท คือ1.จรวดเชื้อเพลิงแข็ง มีโครงสร้างไม่ซับซ้อน แต่เมื่อการเผาไหม้เชื้อเพลิงเกิดขึ้นแล้ว ไม่สามารถหยุดได้ ตัวอย่างของจรวดเชื้อเพลิงแข็งได้แก่ บั้งไฟภาคอีสาน จรวดทำลายรถถัง เป็นต้น 2.จรวดเชื้อเพลิงเหลว มีโครงสร้างซับซ้อนกว่าจรวดเชื้อเพลิงแข็ง เพราะต้องมีถังเก็บเชื้อเพลิงเหลว และออกซิเจนเหลว (เพื่อช่วยให้เกิดการสันดาป) ซึ่งมีอุณหภูมิต่ำกว่าจุดเยือกแข็ง และยังต้องมีระบบปั๊มและท่อเพื่อลำเลียงเชื้อเพลิงเข้าสู่ห้องเครื่องยนต์เพื่อทำการเผาไหม้ดังภาพที่ 1 ด้วยเหตุนี้จรวดเชื้อเพลิงเหลวจึงมีราคาสูง อย่างไรก็ตามจรวดเชื้อเพลิงเหลวมีข้อดีคือ สามารถควบคุมปริมาณการเผาไหม้ และปรับทิศทางของกระแสแก๊สได้ ทำให้ปลอดภัย ควบคุมทิศทางและความเร็วได้ง่าย
![]() |
จรวดเชื้อเพลิงเหลวและจรวดเชื้อเพลิงแข็ง |
![]() |
จรวดเชื้อเพลิงไอออน |
4.ระบบการขนส่งอวกาศ
ระบบขนส่งอวกาศประกอบด้วยส่วนประกอบใหญ่ ๆ 3 ส่วน คือ 1. ยานขนส่งอวกาศ 2. ถังเชื้อเพลิงภายนอก 3. จรวดเขื้อเพลิงขั้นตอนการบินของยานขนส่งอากาศมีดังนี้ 1. ใช้จรวดขับดันเชื้อเพลิงแข็ง 2 ลำเป็นพลังงานในการส่งยานขนส่งอากาศขึ้นจากฐาน 2. เมื่อจรวดขับดันใช้เชื้อเพลิงหมดแล้วจะแยกตัวออกและตกลงสู่พื้นน้ำ และใช้ร่มชูชีพเพื่อนำจรวดขับดันนี้ นำกลับไปยังฐานส่งจรวด เพื่อซ่อมแซมแก้ไขใช้ในโอกาสต่อไป 3. ยานขนส่งอากาศคงเคลื่อนที่สูงขึ้นต่อไป โดยเชื้อเพลิงที่เป็นของเหลวบรรจุในถังเชื้อเพลิงภายนอกให้กับเครื่องยนต์จรวด 3 เครื่อง 4. ถังเชื้อเพลิงภายนอกจะหลุดออกก่อนที่ยานขนส่งอวกาศจะไปถึงวงโคจรรอบโลก และถูกเผาไหม้ในชั้นบรรยากาศ ไม่มีการนำกลับมาใช้งานอีกต่อไป• ยานอวกาศ (Spacecraft) หมายถึง ยานพาหนะที่นำมนุษย์หรืออุปกรณ์อัตโนมัติขึ้นไปสู่อวกาศ โดยมีวัตถุประสงค์เพื่อสำรวจโลกหรือเดินทางไปยังดาวดวงอื่น ยานอวกาศมี 2 ประเภท คือ ยานอวกาศที่มีมนุษย์ควบคุม และยานอวกาศที่ไม่มีมนุษย์ควบคุม -ยานอวกาศที่มีมนุษย์ควบคุม (Manned Spacecraft) มีขนาดใหญ่ เพราะต้องมีปริมาตรพอที่มนุษย์อยู่อาศัยได้ และยังต้องบรรทุกปัจจััยต่างๆ ที่มนุษย์ต้องการ เช่น อากาศ อาหาร และเครื่องอำนวยความสะดวกในการยังชีพ เช่น เตียงนอน ห้องน้ำ ดังนั้นยานอวกาศที่มีมนุษย์ควบคุมจึงมีมวลมาก การขับดันยานอวกาศที่มีมวลมากให้มีอัตราเร่งสูงจำเป็นต้องใช้จรวดที่บรรทุกเชื้อเพลิงจำนวนมาก ซึ่งทำให้มีค่าใช้จ่ายสูงมาก ยานอวกาศที่มีมนุษย์ควบคุมได้แก่ ยานอะพอลโล (Apollo) ซึ่งนำมนุษย์ไปยังดวงจันทร์![]() |
อะพอลโล |
![]() |
ยานแคสสีนี |
ไม่มีความคิดเห็น:
แสดงความคิดเห็น